侵权投诉

如何采用微控制器或数字信号处理器来控制步进电机

2020-03-14 09:09 次阅读

步进电机已经渗透入我们生活的方方面面,本文介绍了一些重要的步进电机相关技术,为开发人员基本了解步进电机的工作原理提供了足够的信息。

如何采用微控制器或数字信号处理器来控制步进电机

步进电机也叫步进器,它利用电磁学原理,将电能转换为机械能,人们早在20世纪20年代就开始使用这种电机。随着嵌入式系统(例如打印机、磁盘驱动器、玩具、雨刷、震动寻呼机、机械手臂和录像机等)的日益流行,步进电机的使用也开始暴增。

不论在工业、军事、医疗、汽车还是娱乐业中,只要需要把某件物体从一个位置移动到另一个位置,步进电机就一定能派上用场。步进电机有许多种形状和尺寸,但不论形状和尺寸如何,它们都可以归为两类:可变磁阻步进电机和永磁步进电机。本文重点讨论更为简单也更常用的永磁步进电机。

步进电机的构造

如图1所示,步进电机是由一组缠绕在电机固定部件--定子齿槽上的线圈驱动的。通常情况下,一根绕成圈状的金属丝叫做螺线管,而在电机中,绕在齿上的金属丝则叫做绕组、线圈、或相。如果线圈中电流的流向如图1所示,并且我们从电机顶部向下看齿槽的顶部,那么电流在绕两个齿槽按逆时针流向流动。根据安培定律和右手准则,这样的电流会产生一个北极向上的磁场。

如何采用微控制器或数字信号处理器来控制步进电机

现在假设我们构造一个定子上缠绕有两个绕组的电机,内置一个能够绕中心任意转动的永久磁铁,这个可旋转部分叫做转子。图2给出了一种简单的电机,叫做双相双极电机,因为其定子上有两个绕组,而且其转子有两个磁极。如果我们按图2a所示方向给绕组1输送电流,而绕组2中没有电流流过,那么电机转子的南极就会自然地按图中所示,指向定子磁场的北极。

再假设我们切断绕组1中的电流,而按图2b所示方向给绕组2输送电流,那么定子的磁场就会指向左侧,而转子也会随之旋转,与定子磁场方向保持一致。

接着,我们再将绕组2的电流切断,按照图2c的方向给绕组1输送电流,注意:这时绕组1中的电流流向与图2a所示方向相反。于是定子的磁场北极就会指向下,从而导致转子旋转,其南极也指向下方。

然后我们又切断绕组1中的电流,按照图2d所示方向给绕组2输送电流,于是定子磁场又会指向右侧,从而使得转子旋转,其南极也指向右侧。

如何采用微控制器或数字信号处理器来控制步进电机

最后,我们再一次切断绕组2中的电流,并给绕组1输送如图2a所示的电流,这样,转子又会回到原来的位置。

至此,我们对电机绕组完成了一个周期的电激励,电机转子旋转了一整圈。也就是说,电机的电频率等于它转动的机械频率。

如果我们用1秒钟顺序完成了图2所示的这4个步骤,那么电机的电频率就是1Hz。其转子旋转了一周,因而其机械频率也是1Hz。总之,一个双相步进电机的电频率和机械频率之间的关系可以用下式表示:

fe=fm*P/2 (1)

其中,fe代表电机的电频率,fm代表其机械频率,而P则代表电机转子的等距磁极数。

从图2中我们还可以看出,每一步操作都会使转子旋转90°,也就是说,一个双相步进电机每一步操作造成的旋转度数可由下式表示:

1 step= 180°/P (2)

由等式(2)可知,一个双极电机每动作一次可以旋转180°/2=90°,这与我们在图2中看到的情形正好相符。此外,该等式还表明,电机的磁极数越多,步进精度就越高。常见的是磁极数在12和200个之间的双相步进电机,这些电机的步进精度在15°和 0.9°之间。

如何采用微控制器或数字信号处理器来控制步进电机

图3给出的例子是一个双相、6极步进电机,其中包含3个永久磁铁,因而有6个磁极。第一步,如图3a所示,我们给绕组1施加电压,在定子中产生一个北极指向其顶部的磁场,于是,转子的南极(图3a中红色的“S”一端)转向了该图的上方。接着,在图3b中,我们给绕组2施加电压,定子中产生一个北极指向其左侧的磁场。

于是,转子的一个距离最近的南极转向了图的左方,即转子顺时针转动了30°。第三步,在图3c中,我们又向绕组1施加一个电压,在定子中产生一个北极指向图下方的磁场,从而又使转子顺时针旋转30°到达图3c所示的位置。而在图3d中,我们给绕组2施加电压,在定子中产生一个北极指向定子右侧的磁场,再一次使转子顺时针旋转30°,到达图3d所示的位置。

最后,我们再向绕组1施加电压,产生一个如图3a所示的北极指向定子上方的磁场,使得转子顺时针旋转30°,结束一个电周期。如此可以看出,4步电激励造成了120°的机械旋转。也就是说,该电机的电频率是机械频率的3倍,这一结果符合等式(1)。此外,我们从图3和等式(2)也能看出,该电机的转子每一步旋转30°。

如果同时向两个绕组输送电流,还能增大电机的扭矩,如图4所示。这时,电机定子的磁场是两个绕组各自产生的磁场的矢量和,虽然这一磁场每一次动作仍然只使电机旋转90°,就象图2和图3中一样,但因为我们同时激励两个电机绕组,所以此时的磁场比单独激励一个绕组时更强。由于该磁场是两个垂直场的矢量和,因此它等于单独每个场的2×1.414倍,从而电机对其负载施加的扭矩也成正比增大。

电机的激励顺序

既然我们知道了一系列激励会使步进电机旋转,接下来就要设计硬件来实现所需的步进序列。一块能让电机动起来的硬件(或结合了硬件和软件的一套设备)就叫做电机驱动器

从图4中可以看出我们怎样激励双相电机的绕组才能使电机转子旋转,图中,电机内的绕组抽头分别被标为1A、1B、2A和2B。其中,1A和1B是绕组1的两个抽头,2A和2B则是绕组2的两个抽头。

首先,要给脚1B和2B施加一个正电压,并将1A和2A接地。然后,给脚1B和2A施加一个正电压,而将1A和2B接地,这一过程其实取决于导线绕齿槽缠绕的方向,假设导线缠绕的方向与上一节所述相符。依次进行下去,我们就得到了表1中总结的激励顺序,其中,“1”表示正电压,“0”表示接地。

电流在电机绕组中有两种可能的流向,这样的电机就叫做双极电机和双极驱动序列。双极电机通常由一种叫做H桥的电路驱动,图5给出了连接H桥和步进电机两根抽头的电路。

H桥通过一个电阻连接到一个电压固定的直流电源(其幅度可根据电机的要求选取),然后,该电路再经过4个开关(分别标为S1、S2、S3和S4)连接到绕组的两根抽头。这一电路的分布看起来有点象一个大写字母H,因此叫做H桥。

从表1中可以看出,要激励该电机,第一步应将抽头2A设为逻辑0,2B设为逻辑1,于是,我们可以闭合开关S1和S4,并断开开关S2和S3。接着,需要将抽头2A设为逻辑1,2B设为逻辑0,于是,我们可以闭合S2、S3,并断开S1和S4。与此类似,第三步我们可以闭合S2、S3并断开S1和S4,第四步则可以闭合S1、S4并断开S2、S3。

对绕组1的激励方法也不外乎如此,使用一对H桥就能产生需要的激励信号序列。表2所示就是激励过程中每一步开关所在的位置。

注意,如果R=0,而开关S1和S3又不小心同时闭合,那么流经开关的电流将达到无穷大。这时,不但开关会被烧坏,电源也可能损坏,因此电路中使用了一个非零阻值的电阻。尽管这个电阻会带来一定的功耗,也会降低电机驱动器的效率,但它可以提供短路保护。

单极电机及其驱动器

前面我们已经讨论了双极步进电机和驱动器。单极电机与双极电机类似,不同的是在单极电机中外部能够接触到的只有每个绕组的中心抽头,如图6所示。我们将从绕组顶部抽出的抽头标为抽头B,底部抽出的标为抽头A,中间的为抽头C。

有时我们会遇到一些抽头没有标注的电机,如果我们清楚步进电机的构造,就很容易通过测量抽头之间的阻值,识别出哪些抽头属于哪根绕组。不同绕组的抽头之间阻抗通常为无穷大。如果经测量,抽头A和C之间的阻抗为100欧姆,那么抽头B和C之间的阻抗也应是100欧姆,而A和B之间的阻抗为200欧姆。200欧姆这一阻抗值就叫做绕组阻抗。

给出一个单极电机的单相驱动电路。从中可以看出,当S1闭合而S2断开时,电流将由右至左流经电机绕组;而当S1断开,S2闭合时,电流流向变为由左至右。因此,我们仅用两个开关就能改变电流的流向(而在双极电机中需要4个开关才能做到)。表3所示为单极电机驱动电路中,每一步激励时开关所处的位置。

虽然单极电机的驱动器控制起来相对简单,但由于在电机中使用了中心抽头,因此它比双极电机更复杂,而且其价格通常比双极电机贵。此外,由于电流只流经一半的电机绕组,所以单极电机只能产生一半的磁场。

在知道了单极电机和双极电机的构造原理之后,当我们遇到一个没有标示抽头也没有数据手册的电机时,我们就能自己推导出抽头和绕组的关系。带4个抽头的电机就是一个双相双极电机,我们可以通过测量导线之间的阻抗来分辨哪两个抽头属于同一个绕组。带6个抽头的电机可能是一个双相单极电机,也可能是一个三相双极电机,具体情况可以通过测量导线之间的阻抗来确定。

电机控制

本文前面讨论的电机控制理论可以采用全硬件方案实现,也可以用微控制器或DSP实现。图8说明了如何用晶体管作为开关来控制双相单极电机。每个晶体管的基极都要通过一个电阻连接到微控制器的一个数字输出上,阻值可以从1到10M欧姆,用于限制流入晶体管基极的电流。每个晶体管的发射极均接地,集电极连到电机绕组的4个抽头。电机的中心抽头均连接到电源电压的正端。

每个晶体管的集电极均通过一个二极管连接到电压源,以保护晶体管不被旋转时电机绕组上的感应电流烧坏。转子旋转时,电机绕组上会出现一个感应电压,如果晶体管集电极没有通过二极管连接到电压源,感应电压造成的电流就会涌入晶体管的集电极。

举个例子,假设数字输出do1为高而do2为低,于是do1会使晶体管T1导通,电流从+V流经中心抽头和T1的基极,然后由T1的发射极输出。但此时do2处于断开状态,因此电流无法流经T2。这样推理下去,我们就能将表3改为驱动电机所需的微控制器数字输出的改变顺序。

一旦清楚了驱动电机所需的硬件和数字输出的顺序,我们就可以对最顺手的微控制器或DSP编写软件,实现这些序列。

固件控制

我本人在一块Microchip PIC16F877上,利用1N4003二极管和2SD1276A达灵顿晶体管实现了以上谈到的电机控制器。PIC的PortA第0位到第3位用来做数字输出。电机采用在Jameco购买的5V双相单极电机(Airpax [Thomson]生产,型号为M82101-P1),并且用同一个5V电源为PIC和电机供电。但在真正应用时,为避免给微控制器的电源信号引入噪声,建议大家还是分别用不同的电源为电机和微控制器供电。

列表1给出了控制程序的汇编源代码,该程序每50毫秒旋转电机一次。首先,程序会将微控制器的数字输出初始化为表4中第一步的值,然后每隔50毫秒(此时间常数由程序中的常量waitTime定义)按照正确的顺序循环输出数字信号。若需使电机反向旋转,只需按与表4所示相反的顺序输出数字信号即可。

笔者所用的电机为24极电机,即每一步输出可以控制电机旋转180°/24=7.5°。电机每50毫秒旋转7.5°,也就是每2.4秒转一周。如果将常量waitTime减小一半,电机转速会加快一倍。但因为转子受惯性、摩擦力和其他机械限制,所以电机转速有一个上限,当定子磁场旋转过快时,转子的转速无法跟上,导致电机的旋转也无法跟上,开始跳动(skipping)。如果这时再降低欧姆aitTime,电机很可能干脆就停止旋转。

除了本文重点讨论的双相电机以外,步进电机还有其他类型,如三相步进电机或四相步进电机。另外还有一些双相步进电机,它们只有一个中心抽头,同时连接到两个绕组的中心点,这类步进电机外部有5个抽头引出。

同样,步进电机也不是电机家族中的唯一成员,最古老也最简单的电机是直流(DC)电机。早期的直流电机使用电刷,现在已经不再流行。如今常见的无刷直流电机,就是利用腾博会大厅安卓版下载线路代替电刷进行换向的直流电机,这类电机中不存在电刷老化问题,因此其寿命比有刷直流电机长很多。

还有一种感应电机,其工作原理与步进电机或直流电机完全不同。直流电机采用的是直流电压源,而感应电机则采用交流(AC)电压源,并且步进电机和直流电机中转子与定子磁场的旋转是同步的,而感应电机中转子的转速滞后于定子磁场的转速。

收藏 人收藏
分享:

评论

相关推荐

数字电路4线步进电机控制的仿真资料免费下载

本文档的主要内容详细介绍的是数字电路4线步进电机控制的仿真资料免费下载。
发表于 06-03 16:28 9次 阅读
数字电路4线步进电机控制的仿真资料免费下载

ATTINY817评估套件是用于评估最新的tinyAVR微控制器

ATTINY817-XPRO,ATtiny817 Xplained Pro评估套件是用于评估最新的...
发表于 06-03 10:51 58次 阅读
ATTINY817评估套件是用于评估最新的tinyAVR微控制器

德州仪器:提高楼宇/家居自动化能效的优化设计方案

在能效方面,设计工程师需要考虑很多因素,他们必须在功能、电池预期寿命和电路板各器件的平均电流消耗之间....
发表于 06-02 08:58 229次 阅读
德州仪器:提高楼宇/家居自动化能效的优化设计方案

MP2013低静态电流线性调节器的数据手册免费下载

MP2013是一款低功耗线性稳压器,为配备高压电池的系统供电。它包括一个宽的2.5V至40V输入范围....
发表于 06-01 08:00 20次 阅读
MP2013低静态电流线性调节器的数据手册免费下载

基于AT89C51微控制器实现具有道路学习记忆的机器人设计

随着科学技术的不断发展,机器人技术在航天、海洋、军事、建筑、交通、工业及服务业等领域已经取得广泛的应....
发表于 05-31 16:16 110次 阅读
基于AT89C51微控制器实现具有道路学习记忆的机器人设计

不同相数的步进电机如何选择,其优缺点如何

选择步进电机时首先要考虑各种步进电机的优缺点,在这里先介绍不同相数的步进电机的优缺点: ■两相永磁式....
发表于 05-31 09:26 40次 阅读
不同相数的步进电机如何选择,其优缺点如何

基于闪存的MC9S12NE64微控制器解决单芯片以太网连接问题

在一个星期一的凌晨5点,一座大型工业建筑的灌溉系统准时开启。正常情况下,建筑周围的草地、花木和植被都....
发表于 05-31 09:15 73次 阅读
基于闪存的MC9S12NE64微控制器解决单芯片以太网连接问题

步进电机的常见问题分析以及应用场景介绍

一、步进电机常见问题 1、步进电机应用于低速场合---每分钟转速不超过1000转,(0.9度时666....
发表于 05-29 15:27 70次 阅读
步进电机的常见问题分析以及应用场景介绍

语音编码和解码免费Speex音频编解码器的微控制器

良好的声音质量,语音编码和解码免费Speex音频编解码器的微控制器...
发表于 05-29 11:52 76次 阅读
语音编码和解码免费Speex音频编解码器的微控制器

求42系列步进电机驱动电路图

请问有没有42系列步进电机驱动电路图
发表于 05-29 10:19 28次 阅读
求42系列步进电机驱动电路图

采用ST62 MCU如何实现通用电机的无传感器控制

应用电路采用低成本8位微控制器ST6220,轨到轨运算放大器TS912,三端双向可控硅开关和小值检测电阻,成为无传感器速度调...
发表于 05-29 08:18 46次 阅读
采用ST62 MCU如何实现通用电机的无传感器控制

TMC5072-LA双轴步进电机驱动芯片双轴编码器接口

TMC5072] 两个2相步进电机驱动能力高达2x 1.1A线圈电流(2x 1.5A峰值)一个电机的并联选项,2.2A(3A峰值)具有sixPoin...
发表于 05-27 15:28 161次 阅读
TMC5072-LA双轴步进电机驱动芯片双轴编码器接口

TMS320F2837xS系列微控制器的技术参考手册资料免费下载

CPU是32位定点处理器。该设备借鉴了数字信号处理、精简指令集计算(RISC)、微控制器体系结构、固....
发表于 05-27 08:00 49次 阅读
TMS320F2837xS系列微控制器的技术参考手册资料免费下载

EFM8SB1微控制器的数据手册免费下载

EFM8SB1是MCU Sleepy Bee系列的一部分,它是世界上最节能的8位微控制器,具有全方位....
发表于 05-27 08:00 53次 阅读
EFM8SB1微控制器的数据手册免费下载

PIC18F8722增强型闪存微控制器的数据手册免费下载

除了作为时钟源的可用性外,内部振荡器块还提供稳定的参考源,该参考源为家族提供了其他稳健操作的特性:•....
发表于 05-26 08:00 64次 阅读
PIC18F8722增强型闪存微控制器的数据手册免费下载

步进电机控制PLC的程序免费下载

本文档的主要内容详细介绍的是步进电机控制PLC的程序免费下载。
发表于 05-26 08:00 70次 阅读
步进电机控制PLC的程序免费下载

DALI Slave采用ATxmega32E5的参考设计

DALI Slave采用ATxmega32E5参考设计。该参考设计演示了使用ATxmega32E5微控制器的DALI从器件。连接到同一总线...
发表于 05-26 06:31 78次 阅读
DALI Slave采用ATxmega32E5的参考设计

舞蹈机器人的步进电机仿真程序和工程文件免费下载

本文档的主要内容详细介绍的是舞蹈机器人的步进电机仿真程序和工程文件免费下载。
发表于 05-25 16:48 53次 阅读
舞蹈机器人的步进电机仿真程序和工程文件免费下载

ULN2003驱动步进电机的keil程序和电路图免费下载

本文档的主要内容详细介绍的是ULN2003驱动步进电机的keil程序和电路图免费下载。
发表于 05-25 11:56 52次 阅读
ULN2003驱动步进电机的keil程序和电路图免费下载

东昊电机教您步进电机使用时的注意事项

步进电机驱动器都支持细分功能,即实现很小的步进角,控制更精确。但是步进电机不适合使用在长时间同方向运....
发表于 05-24 10:09 58次 阅读
东昊电机教您步进电机使用时的注意事项

哪位大神可以帮我注释一下步进电机调速控制的c程序

#define uchar unsigned char sbit UpPulse=P3^4; static uchar step; void InitTimer(void); void InitTimer(void...
发表于 05-23 00:35 127次 阅读
哪位大神可以帮我注释一下步进电机调速控制的c程序

AT91SAM9RL-EK专为基于SAM9R64 / SAM9RL64 ARM9 MCU的应用而设计的评估套件

AT91SAM9RL-EK评估套件可以对AT91SAM9RL器件上运行的应用进行评估和代...
发表于 05-22 13:07 104次 阅读
AT91SAM9RL-EK专为基于SAM9R64 / SAM9RL64 ARM9 MCU的应用而设计的评估套件

基于微控制器的功率控制器示例

使用MIC5013 MOSFET预驱动器设计和构建的基于微控制器的功率控制器示例...
发表于 05-22 09:06 126次 阅读
基于微控制器的功率控制器示例

STM8S系列和STM8AF系列8位微控制器参考手册免费下载

本参考手册为应用程序开发人员提供了有关如何使用STM8S和STM8AF系列微控制器内存和外围设备的完....
发表于 05-22 08:00 80次 阅读
STM8S系列和STM8AF系列8位微控制器参考手册免费下载

STM8S207和STM8S208系列微控制器的数据手册免费下载

STM8S20xxx性能线8位微控制器提供32至128千字节的闪存。它们在STM8S微控制器系列参考....
发表于 05-22 08:00 65次 阅读
STM8S207和STM8S208系列微控制器的数据手册免费下载

STM32L系列微控制器的数据手册免费下载

本文档的主要内容详细介绍的是STM32L系列微控制器的数据手册免费下载。
发表于 05-21 17:25 69次 阅读
STM32L系列微控制器的数据手册免费下载

L297配合场效应管步进电机的keil程序和电路图免费下载

本文档的主要内容详细介绍的是L297配合场效应管步进电机的keil程序和电路图免费下载。
发表于 05-21 15:55 43次 阅读
L297配合场效应管步进电机的keil程序和电路图免费下载

L298N控制步进电机的keil程序和电路图免费下载

本文档的主要内容详细介绍的是L298N控制步进电机的keil程序和电路图免费下载。
发表于 05-21 15:55 82次 阅读
L298N控制步进电机的keil程序和电路图免费下载

如何设置pmod输出所需的帮助?

大家好.. 我想通过zedboard上可用的Pmods运行步进电机,其想法是首先启用pmod的输出,使电机获得电压并开始旋转,经过一段时间...
发表于 05-21 13:34 35次 阅读
如何设置pmod输出所需的帮助?

步进驱动器工作原理_步进电机驱动器上拨码开关怎样设置

步进电机驱动器电路设计解析步进电机在控制系统中具有普遍的应用。它能够把脉冲信号转换成角位移并且可用作....
发表于 05-21 10:51 283次 阅读
步进驱动器工作原理_步进电机驱动器上拨码开关怎样设置

STM32系列微控制器的中文参考手册免费下载

系统构架在小容量、中容量和 大容量产品中,主系统由以下部分构成: ● 四个驱动单元: ─ Corte....
发表于 05-21 08:00 60次 阅读
STM32系列微控制器的中文参考手册免费下载

步进电机驱动器系统的焊接说明

极性电容管脚是有正负极性的,长脚是正极,正脚一般都接VCC端。标有“-”的一侧为负极。正极PCB图上....
发表于 05-21 08:00 81次 阅读
步进电机驱动器系统的焊接说明

PIC18F2455系列高性能增强型闪存USB微控制器的数据手册免费下载

这一系列的设备提供了所有PIC18微控制器的优势,即高计算性能和经济的价格,加上高耐久性,增强的闪存....
发表于 05-21 08:00 50次 阅读
PIC18F2455系列高性能增强型闪存USB微控制器的数据手册免费下载

2020年安森美微控制器的发展趋势及市场机遇

当用户信用卡信息和设施暖通空调(HVAC)系统联接,边缘和嵌入式处理的安全性成为系统结构的主要影响因....
发表于 05-19 14:32 149次 阅读
2020年安森美微控制器的发展趋势及市场机遇

在48V HEV/EV系统中信号隔离的重要性分析

多电压电平的存在需要隔离来保护低压电路免受高压影响。显然,对于400V及以上的电池,您需要隔离,但在....
发表于 05-15 15:59 421次 阅读
在48V HEV/EV系统中信号隔离的重要性分析

51单片机可编程电机驱动程序合集免费下载

本文档的主要内容详细介绍的是51单片机可编程电机驱动程序合集免费下载包括了:2相电机程序,4相电机程....
发表于 05-15 08:00 88次 阅读
51单片机可编程电机驱动程序合集免费下载

使用8051单片机原理的步进电机控制

进入电机驱动器时,两个使能引脚和两个电源引脚连接到+ 5V电源。四个输入连接到8051的PORT1引....
的头像 单片机 发表于 05-14 10:39 980次 阅读
使用8051单片机原理的步进电机控制

使用8051的控制直流风扇的温控电路

ADC0804是一个8位ADC。对于5V的参考电压,我们将获得5V / 28 = 20mV的分辨率。....
的头像 单片机 发表于 05-14 10:32 897次 阅读
使用8051的控制直流风扇的温控电路

如何将光学旋转编码器与arduino微控制器连接

我们还可以通过比较两个输出的信号极性来确定轴的旋转方向。因为两组插槽之间有一定的偏移,光学旋转编码器....
的头像 单片机 发表于 05-14 09:41 741次 阅读
如何将光学旋转编码器与arduino微控制器连接

PIC单片机之步进电机的工作原理及使用方法

那我们该如何来控制步进电机转动呢?直流电机我们只要在电机两极加上电压,电机马上转动,但步进电机并非这....
的头像 畅学单片机 发表于 05-14 09:31 892次 阅读
PIC单片机之步进电机的工作原理及使用方法

英飞凌与e络盟社区携手发起“Sustain our Planet”设计挑战赛

在“Sustain our Planet”设计挑战赛中,英飞凌与e络盟要求开发人员开发出能够让人们的....
发表于 05-13 17:18 98次 阅读
英飞凌与e络盟社区携手发起“Sustain our Planet”设计挑战赛

新冠病毒的爆发为MCU发展带来了机遇

正所谓不破不立,此次新冠病毒在全球范围内的爆发,对国外的半导体芯片产业也是十足的冲击,许多厂商纷纷宣....
发表于 05-10 10:03 206次 阅读
新冠病毒的爆发为MCU发展带来了机遇

STM32Cube微控制器开发软件已于GitHub正式上线

意法半导体在人气颇高的代码托管网站平台GitHub上发布了STM32Cube嵌入式软件,向开发者开放....
的头像 独爱72H 发表于 05-09 11:20 557次 阅读
STM32Cube微控制器开发软件已于GitHub正式上线

意法半导体STM32Cube微控制器开发软件在GitHub正式上线

在GitHub上发布STM32Cube软件全部原始代码,可以让1000多款STM32 *Arm®Co....
发表于 05-08 10:50 546次 阅读
意法半导体STM32Cube微控制器开发软件在GitHub正式上线

拆开步进电机,学单片机控制技术中最常见的一种

虽然步进电机已被广泛地应用,但步进电机并不能像普通的直流电机,交流电机在常规下使用。它必须由双环形脉....
的头像 玩转单片机 发表于 05-07 15:24 836次 阅读
拆开步进电机,学单片机控制技术中最常见的一种

基于PICl6C56微控制器和PT2258芯片实现AV功放音响控制系统的设计

本设计以Microchip公司的PICl6C56为主控IC,系统硬件电路框图如图1所示。通过模拟开关....
发表于 05-03 17:54 145次 阅读
基于PICl6C56微控制器和PT2258芯片实现AV功放音响控制系统的设计

基于SM79164为微控制器和CM300通信模块实现基站可视化监控系统设计

随着现代通信事业的迅猛发展,通信机房的数量急剧增加,在提高通信服务质量的同时,对通信机房的管理也提出....
发表于 05-03 10:30 218次 阅读
基于SM79164为微控制器和CM300通信模块实现基站可视化监控系统设计

基于MSP430单片机和微型输注仪器实现电机驱动装置的设计

步进电机是一种将数字信号直接转换成角位移或线位移的控制驱动元件,具有快速起动和停止的特点。其机械位移....
发表于 05-03 10:21 144次 阅读
基于MSP430单片机和微型输注仪器实现电机驱动装置的设计

未来腾博会大厅安卓版下载标签多元的应用也为传统的生活模式带来巨大的改变

由于高精确度以及劳动成本大幅降低两大优势,腾博会大厅安卓版下载标签市场将逐渐成长,根据 Mordor Intelli....
的头像 益登科技 发表于 04-30 10:21 1111次 阅读
未来腾博会大厅安卓版下载标签多元的应用也为传统的生活模式带来巨大的改变

ATmega48系列微控制器的数据手册免费下载

ATmega48A/48PA/88A/88PA/168A/168PA/328/328P是基于AVR增....
发表于 04-30 08:00 71次 阅读
ATmega48系列微控制器的数据手册免费下载

贸泽腾博会大厅安卓版下载将供应Qorvo PAC5524电机控制器和驱动器

贸泽腾博会大厅安卓版下载供应的Qorvo PAC5524采用Qorvo的多模电源管理器 (MMPM),能为多种电源提....
发表于 04-29 06:04 225次 阅读
贸泽腾博会大厅安卓版下载将供应Qorvo PAC5524电机控制器和驱动器

圣邦微腾博会大厅安卓版下载SGM42630步进电机驱动器的性能特点及应用

以步进电机,特别是闭环步进电机为例,它们非常适合应用于对精度有一定要求的低成本工业控制市场,如纺织机....
的头像 牵手一起梦 发表于 04-28 16:48 502次 阅读
圣邦微腾博会大厅安卓版下载SGM42630步进电机驱动器的性能特点及应用

ATtiny25微控制器的数据手册免费下载

ATtiny25/45/85是基于AVR增强RISC架构的低功耗CMOS 8位微控制器。通过在一个时....
发表于 04-28 08:00 107次 阅读
ATtiny25微控制器的数据手册免费下载

PLC控制步进电机分度的设计与实现详细说明

简要介绍利用 PLC 控制步进电机对执行元件进行自动分度, 重点介绍一种 PLC 控制步进电机的分度....
发表于 04-28 08:00 206次 阅读
PLC控制步进电机分度的设计与实现详细说明

SST89E516RDx和SST89V516RDx系列8位微控制器的数据手册免费下载

SST89E516RDx和SST89V516RDx是FlashFlex51系列8位微控制器产品的成员....
发表于 04-28 08:00 104次 阅读
SST89E516RDx和SST89V516RDx系列8位微控制器的数据手册免费下载

Maxim推出MAX32520 ChipDNATM安全Arm Cortex-M4微控制器

IoT市场在保持连续增长的同时,大量设备被安装到不受管控的区域,甚至具有潜在风险的环境下,使其更容易....
的头像 美信半导体 发表于 04-27 16:21 863次 阅读
Maxim推出MAX32520 ChipDNATM安全Arm Cortex-M4微控制器

基于FX1S-10MT型PLC和步进电机驱动装置实现玩具燃烧测试系统的设计

在美国玩具标准ASTM F963-03中,玩具主轴线定义为:一条连接产品上最远的部分或端点的距离最长....
发表于 04-27 10:13 293次 阅读
基于FX1S-10MT型PLC和步进电机驱动装置实现玩具燃烧测试系统的设计

NXP语音控制方案

NXP语音控制方案 1. 微控制器 2. 存储器 128Mb Micron MT25QL128 Qu....
发表于 04-27 09:03 103次 阅读
NXP语音控制方案

STM32F446xC系列微控制器的数据手册

STM32F446xC/E设备基于高性能Arm®Cortex®M4 32位RISC内核,工作频率高达....
发表于 04-27 08:00 143次 阅读
STM32F446xC系列微控制器的数据手册

利用模拟前端和高性能微控制器实现IoMT互联心脏监测系统

用于IoMT(医疗物联网)的互联心脏监测系统将需要高度复杂的模拟前端、高性能MCU和低功耗的无线连接....
的头像 牵手一起梦 发表于 04-26 17:21 825次 阅读
利用模拟前端和高性能微控制器实现IoMT互联心脏监测系统

SM320C6748-HIREL 定点/浮点数字信号处理器

SM320C6748-HIREL 定点和浮点 DSP 是一款低功耗 应用 处理器,该处理器基于 C674x DSP 内核。该DSP 与其他 TMS320C6000™ 平台 DSP 相比,功耗要小很多。 凭借这款器件,原始设备制造商 (OEM) 和原始设计制造商 (ODM) 能够充分利用全集成混合处理器解决方案的灵活性,迅速将兼具稳健操作系统、丰富用户接口和高处理器性能的器件推向市场。 该器件的 DSP 内核采用基于 2 级缓存的架构。第 1 级程序缓存 (L1P) 是一个 32KB 的直接映射缓存,第 1 级数据缓存 (L1D) 是一个 32KB 的 2 路组相连缓存。第 2 级程序缓存 (L2P) 包含 256KB 的存储空间,由程序空间和数据空间共享。L2 存储器可配置为映射存储器、缓存或二者的组合。尽管系统内的其他主机可访问 DSP L2,但还是额外提供了一个 128KB 的 RAM 共享存储器给其他主机使用,从而避免对 DSP 性能产生影响。 对于支持安全功能的器件,TI 的基本安全启动可为用户保护自主知识产权并防止外部实体修改用户开发的算法。该安全启动流程从一个基于硬件的“信任根”开始,确保代码从一个已知安全的位置开始执行。默认情况下会锁定 JTAG 端口以防止仿真和调试...
发表于 11-02 19:34 40次 阅读
SM320C6748-HIREL 定点/浮点数字信号处理器

SMJ320C6415 定点数字信号处理器

TMS320C64x ?? DSP(包括SMJ320C6414,SMJ320C6415和SMJ320C6416器件)是TMS320C6000中性能最高的定点DSP产品? DSP平台。 TMS320C64x ?? (C64x ?? )设备是基于第二代高性能,先进的VelociTI ??德州仪器(TI)开发的超长指令字(VLIW)架构(VelociTI.2 ??),使这些DSP成为多通道和多功能应用的绝佳选择。 C64x ??是C6000的代码兼容成员?? DSP平台。 C64x器件以720 MHz的时钟速率提供高达57.6亿条指令/秒(MIPS)的性能,可为高性能DSP编程挑战提供经济高效的解决方案。 C64x DSP具有高速控制器的操作灵活性和阵列处理器的数字功能。 C64x ?? DSP内核处理器有64个32位字长的通用寄存器和8个高度独立的功能单元 - 两个乘法器用于32位结果和六个算术逻辑单元(ALU)??用VelociTI.2 ??扩展。 VelociTI.2 ??八个功能单元中的扩展包括新的指令,以加速关键应用程序的性能,并扩展VelociTI的并行性?建筑。 C64x每周期可产生4个32位乘法累加(MAC),总计每秒2400万MAC(MMACS),或每周期8个8位MAC,总计4800 MMACS。 C64x DSP还具有特定于应用的硬件逻...
发表于 11-02 18:50 248次 阅读
SMJ320C6415 定点数字信号处理器

MSP430F2619S-HT 高温 16 位超低功耗 MCU,具有 120KB 闪存、4KB RAM、12 位 ADC、双 DAC、2 个 USCI、HW 乘法器和 DMA

MSP430F2619S超低功耗微控制器具有针对各种应用的不同外设集。该架构与五种低功耗模式相结合,经过优化,可在便携式测量应用中实现更长的电池寿命。该器件具有功能强大的16位RISC CPU,16位寄存器和常量发生器,可实现最高的代码效率。数字控制振荡器(DCO)允许在不到1μs的时间内从低功耗模式唤醒到工作模式。 MSP430F2619S是一款微控制器配置,带有两个内置16位定时器,速度快12位A /D转换器,比较器,双12位D /A转换器,4个通用串行通信接口(USCI)模块,DMA和最多64个I /O引脚。 典型应用包括捕获模拟信号,将其转换为数字值,然后处理数据以供显示或传输到主机系统的传感器系统。独立的RF传感器前端是另一个应用领域。 特性 1.8 V至3.6 V的低电源电压范围 超低功耗 有效模式:1 MHz时为365μA,2.2 V 待机模式(VLO):0.5μA 关闭模式(RAM保持):0.1μA < /li> 在小于1μs的待机模式下唤醒 16位RISC架构,62.5 ns指令周期时间 三通道内部DMA 具有内部参考,采样保持和自动扫描功能的12位模数(A /D)转换器 双12位数模(D) /A)具有同步功能的转换器 具有三个捕捉/比较寄存器的...
发表于 11-02 18:49 131次 阅读
MSP430F2619S-HT 高温 16 位超低功耗 MCU,具有 120KB 闪存、4KB RAM、12 位 ADC、双 DAC、2 个 USCI、HW 乘法器和 DMA

MSP430F2618-EP 增强型产品 16 位超低功耗 MCU,具有 92KB 闪存、8KB RAM、12 位 ADC、双 DAC、2 个 USCI

德州仪器(TI)MSP430系列超低功耗微控制器由多个器件组成,具有针对各种应用的不同外设集。该架构与五种低功耗模式相结合,经过优化,可在便携式测量应用中实现更长的电池寿命。该器件具有功能强大的16位RISC CPU,16位寄存器和恒定发生器,有助于实现最高的代码效率。经过校准的数字控制振荡器(DCO)允许在不到1μs的时间内从低功耗模式唤醒到工作模式。 MSP430F2618是一个带有两个内置16位定时器的微控制器配置,快速12位A /D转换器,比较器,双12位D /A转换器,4个通用串行通信接口(USCI)模块,DMA和最多64个I /O引脚。典型应用包括传感器系统,工业控制应用,手持式仪表等。 特性 低电源电压范围,1.8 V至3.6 V 超低功耗: 有源模式:1 MHz时为365μA,2.2 V 待机模式(VLO):0.5μA 关闭模式(RAM保持):0.1μA 小于1μs从待机模式唤醒 16位RISC架构,62.5 ns指令周期时间 三通道内部DMA < /li> 具有内部参考的12位模数(A /D)转换器,采样保持和自动扫描功能 双12位数字转换器 - 具有同步功能的模拟(D /A)转换器 具有三个捕捉/比较寄存器的16位Timer_A 具有七个捕捉/比较阴...
发表于 11-02 18:49 147次 阅读
MSP430F2618-EP 增强型产品 16 位超低功耗 MCU,具有 92KB 闪存、8KB RAM、12 位 ADC、双 DAC、2 个 USCI

MSP430F2013-EP 增强型产品 16 位超低功耗微处理器,2kB 闪存、128B RAM、16 位 Σ-Δ A/D

德州仪器(TI)MSP430系列超低功耗微控制器包含多种器件,它们具有面向多种应用的不同外设集。种架构与5种低功耗模式相组合,专为在便携式测量应用中延长电池的使用寿命而优化。该器件具有一个强大的16位RISC CPU,16位寄存器和有助于获得最大编码效率的常数发生器。数字控制振荡器(DCO)可在不到1μs的时间里完成从低功耗模式至运行模式的唤醒。 MSP430F2013是一个具有内置16位时钟和10个I /O针脚的超低功率混合信号微控制器。除此之外,MSP430F2013有一个使用同步协议(SPI或I2C)的内置通信组件和一个16位的三角积分(Sigma-Delta)A /D转换器。 典型应用包括传感器系统,此类系统负责捕获模拟信号,将之转换为数字值,随后对数据进行处理以进行显示或传送至主机系统。独立射频(RF)传感器前端属于另外的应用域。 特性 低电源电压范围:1.8 V至3.6 V 超低功耗 运行模式:220μA(在1MHz频率和2.2V电压条件下) 待机模式:0.5μA 关断模式(RAM保持):0.1μA 5种节能模式 可在不到1μs的时间里超快速地从待机模式唤醒 16位RISC架构,62.5ns指令周期< /li> 基本时钟模块配置: 高达16 MHz的内...
发表于 11-02 18:49 63次 阅读
MSP430F2013-EP 增强型产品 16 位超低功耗微处理器,2kB 闪存、128B RAM、16 位 Σ-Δ A/D

MSP430FR5739-EP MSP430FR5739-EP 混合信号微控制器

德州仪器(TI)573MSP430FRx系列超低功率微控制器包含多个器件,该系列器件具有嵌入式FRAM非易失性存储器,超低功率16位MSP430 CPU,以及针对多种应用的不同外设。此架构,FRAM,和外设,与7种低功率模式组合在一起,针对在便携式和无线感测应用中实现延长电池寿命进行了解优质.FAM是一款全新的非易失性存储器,此存储器将SRAM的速度,灵活性,和耐久性与闪存的稳定性和可靠性结合在一起,总体能耗更低。其外设包括:1个10位模数转换器(ADC),1个具有基准电压生成和滞后功能的16通道比较器,3个支持I 2 C,SPI或UART协议的增强型串行通道,1个内部直接存储器访问(DMA),1个硬件乘法器,1个实时时钟(RTC),5个16位定时器和数字I /O. 特性 嵌入式微控制器 时钟频率高达24MHz的16位精简指令集(RISC)架构 < li>宽电源电压范围(2V至3.6V) 工作温度范围-55°C至85°C 经优化超低功率模式 激活模式:81.4μA/MHz(典型值) 待机(具有VLO的LPM3):6.3μA(典型值) 实时时钟(具有晶振的LPM3.5):1.5μA(典型值) 关断(LPM4.5):0.32μA(典型值) 超低功率铁电...
发表于 11-02 18:49 73次 阅读
MSP430FR5739-EP MSP430FR5739-EP 混合信号微控制器

MSP430G2332-EP .混合信号微控制器

德州仪器公司MSP430系列超低功耗微控制器包含多种器件,这些器件特有面向多种应用的不同外设集。为了延长便携式应用中所用电池的寿命,对这个含5种低功耗模式的架构进行了优化。该器件具有一个强大的16位RISC CPU,16位寄存器和有助于获得最大编码效率的常数发生器。数控振荡器(DCO)允许在不到1μs的时间内从低功耗模式唤醒到工作模式。 MSP430G2332系列微控制器是超低功耗混合信号微控制器,此微控制器带有内置的 16位定时器,和高达16个I /O触感使能引脚以及使用通用串行通信接口的内置通信功能.MSP430G2332系列带有一个10位模数(A /D)转换器。配置详细信息,请见。典型应用包括低成本传感器系统,此类系统负责捕获模拟信号,将之转换为数字值,随后对数据进行处理以进行显示或送至主机系统。 特性 低电源电压范围:1.8 V至3.6 V 超低功耗 运行模式:220μA(在1 MHz频率和2.2 V电压条件下) 待机模式:0.5μA 关闭模式(RAM保持):0.1μA 5种节能模式 可在不到1μs的时间里超快速地从待机模式唤醒 16位RISC架构,62.5ns指令周期时间 基本时钟模块配置 带有四个已校准频率的高达16MHz的内部频率 内部超...
发表于 11-02 18:49 78次 阅读
MSP430G2332-EP .混合信号微控制器

MSP430F2274-EP 具有 32kB 闪存和 1K RAM 的 16 位超低功耗微控制器

德州仪器(TI)MSP430系列超低功耗微控制器由多个器件组成,具有针对各种应用的不同外设集。该架构与五种低功耗模式相结合,经过优化,可在便携式测量应用中实现更长的电池寿命。该器件具有功能强大的16位RISC CPU,16位寄存器和常量发生器,可实现最高的代码效率。数字控制振荡器(DCO)允许在不到1μs的时间内从低功耗模式唤醒到工作模式。 MSP430F2274M系列是一款超低功耗混合信号微控制器,带有两个内置16-位定时器,通用串行通信接口,带集成参考和数据传输控制器(DTC)的10位A /D转换器,MSP430F2274M器件中的两个通用运算放大器,以及32个I /O引脚。 < p>典型应用包括捕获模拟信号,将其转换为数字值,然后处理数据以供显示或传输到主机系统的传感器系统。独立的RF传感器前端是另一个应用领域。 特性 1.8 V至3.6 V的低电源电压范围 超低功耗 活动模式: 1 MHz时270μA,2.2 V 待机模式:0.7μA 关闭模式(RAM保持):0.1μA 待机模式下的超快唤醒时间小于1μs 16位RISC架构,62.5 ns指令周期时间 基本时钟模块配置 内部频率高达16 MHz,具有四个校准频率至±1% 内部超低功耗低频振荡器 32...
发表于 11-02 18:49 96次 阅读
MSP430F2274-EP 具有 32kB 闪存和 1K RAM 的 16 位超低功耗微控制器

MSP430F2132-EP MSP430F2132-EP 混合信号微控制器

MSP430F2132是一款超低功耗微控制器。这种架构与5种低功耗模式相组合,专为在便携式测量应用中延长电池使用寿命而优化。该器件具有一个强大的16位RISC CPU,16位寄存器和有助于获得最大编码效率的常数发生器。数字控制振荡器(DCO)可在不到1μs的时间里完成从低功耗模式至运行模式的唤醒。 MSP430F2132有两个内置的16位定时器,一个具有集成基准和数据传输控制器(DTC)的快速10位模数转换器,一个比较器,由通用串行通信接口实现的内置通信能力,以及多达24个输入输出(I /O)引脚。 特性 低电源电压范围:1.8V至3.6V 超低功耗 激活模式:250μA(在1MHz频率和2.2V电压条件下) 待机模式:0.7μA 关闭模式(RAM保持):0.1μA < /li> 可在不到1μs的时间里超快速地从待机模式唤醒 16位精简指令集(RISC)架构,62.5ns指令周期时间 基本时钟模块配置 高达16MHz的内部频率并具有4个精度为±1%的校准频率 内部超低功耗低频振荡器 32kHz晶振晶体振荡器不能在超过105°C的环境中运行。 高达16MHz的高频(HF)晶振 谐振器 外部数字时钟源 外部电阻器 配有3个捕获/比较寄存器的16位Timer0_A3 具有2个捕捉...
发表于 11-02 18:49 97次 阅读
MSP430F2132-EP MSP430F2132-EP 混合信号微控制器

MSP430FR5989-EP 具有 128KB FRAM、2KB SRAM、48 IO、ADC12、Scan IF 和 AES 的 16MHz ULP 微控制器

MSP430™超低功耗(ULP)FRAM平台将独特的嵌入式FRAM和整体超低功耗系统架构组合在一起,从而使得创新人员能够以较少的能源预算增加性能.FRAM技术以低很多的功耗将SRAM的速度,灵活性和耐久性与闪存的稳定性和可靠性组合在一起。 MSP430 ULP FRAM产品系列由多种采用FRAM,ULP 16位MSP430 CPU的器件和智能外设组成,可适用于各种应用.ULP架构具有七种低功耗模式,这些模式都经过优化,可在能源受限的应用中实现较长的电池寿命。 作为一款高可靠性增强型产品,此器件具有受控的基线,扩展的温度范围(-55°C至95°C)和金键合线封装,尤其适用于任务关键型应用。 特性 嵌入式微控制器 高达16 MHz时钟频率的16位精简指令集(RISC)架构 宽电源电压范围(1.8V至3.6V) 每SVS H 上电电平所需的最小上电电源电压为1.99V 经优化的超低功率模式 工作模式:大约100μA/MHz 待机(具有低功率低频内部时钟源(VLO)的LPM3):0.4μA(典型值) 实时时钟(RTC)(LPM3.5):0.35μA(典型值)(1) 关断(LPM4.5):0.02μA(典型值) 超低功耗铁电RAM(FRAM) 高达...
发表于 11-02 18:49 81次 阅读
MSP430FR5989-EP 具有 128KB FRAM、2KB SRAM、48 IO、ADC12、Scan IF 和 AES 的 16MHz ULP 微控制器

MSP430F249-EP 增强型产品 16 位超低功耗微处理器,具有 60KB 闪存、2KB RAM、12 位 ADC、2 个 USCI

德州仪器(TI)MSP430系列超低功耗微控制器由多个器件组成,具有针对各种应用的不同外设集。该架构与五种低功耗模式相结合,经过优化,可在便携式测量应用中实现更长的电池寿命。该器件具有功能强大的16位RISC CPU,16位寄存器和恒定发生器,有助于实现最高的代码效率。经过校准的数字控制振荡器(DCO)允许在不到1μs的时间内从低功耗模式唤醒到工作模式。 MSP430F249系列是带有两个内置16位定时器的微控制器配置,快速12位A /D转换器,比较器,四个通用串行通信接口(USCI)模块和多达48个I /O引脚。 典型应用包括传感器系统,工业控制应用,手工举行米等。 特性 低电源电压范围,1.8 V至3.6 V 超低功耗: 工作模式:1 MHz时270μA,2.2 V 待机模式(VLO):0.3μA 关闭模式(RAM保持):0.1μA 待机模式下的超快速唤醒(小于1μs) 16位RISC架构,62.5-ns 指令周期时间 基本时钟模块配置: 内部频率高达16 MHz 内部超低功耗低频振荡器 32 kHz晶振(-40°C)仅限105°C 内部频率高达16 MHz,四个校准频率为±1% 谐振器 外部数字时钟源< /li> 外部电阻器 12位模数(A /D)转换器带内部参...
发表于 11-02 18:49 166次 阅读
MSP430F249-EP 增强型产品 16 位超低功耗微处理器,具有 60KB 闪存、2KB RAM、12 位 ADC、2 个 USCI

MSP430G2231-EP 混合信号微控制器

MSP430G2231是一款包含几个器件的超低功耗微控制器,这几个器件特有针对多种应用的不同外设集。这种架构与5种低功耗模式相组合,专为在便携式测量应用中延长电池使用寿命而优化。该器件具有一个强大的16位RISC CPU,16位寄存器和有助于获得最大编码效率的常数发生器。数字控制振荡器(DCO)可在不到1μs的时间里完成从低功耗模式至运行模式的唤醒。 MSP430G2231有一个10位A /D转换器和使用同步协议(SPI或者I2C)实现的内置通信功能。配置详细信息,请见。 典型应用包括低成本传感器系统,此类系统负责捕获模拟信号,将之转换为数字值,随后对数据进行处理以进行显示或传送至主机系统。 特性 低电源电压范围:1.8V至3.6V 超低功耗 运行模式:220μA(在1MHz频率和2.2V电压条件下) 待机模式:0.5μA 关闭模式(RAM保持):0.1μA < /li> 5种节能模式 可在不到1μs的时间里超快速地从待机模式唤醒 16位精简指令集(RISC)架构,62.5 ns指令周期时间 基本时钟模块配置 具有一个校准频率并高达16MHz的内部频率 内部极低功率低频(LF)振荡器 li> 32kHz晶振晶体振荡器不能在超过105°C的环境中运行 外部数字...
发表于 11-02 18:49 113次 阅读
MSP430G2231-EP 混合信号微控制器

MSP430F5328-EP 混合信号微控制器,MSP430F5328-EP

为了延长便携式测量应用中的电池使用寿命,对MSP430F5328架构与扩展低功耗模式的组合进行了优化。该器件具有一个强大的这个控制振荡器(DCO)可以在3.5μs(典型值)内从低功率模式唤醒至激活模式。 MSP430F5328是一款微控制器配置,此配置有一个集成3.3V LDO,4个16位定时器,一个高性能12位模数转换器(ADC),2个通用串行通信接口( USCI),硬件乘法器,DMA,带有警报功能的实时时钟模块,和47个I /O引脚。 典型应用包括模数传感器系统,数据记录器和多种通用应用。 特性 低电源电压范围: 3.6V到低至1.8V 超低功耗 激活模式(AM):所有系统时钟激活 8MHz,3V,闪存程序执行时为290μA/MHz(典型值) 8MHz,3V,RAM程序执行时为150μA/MHz (典型值) 待机模式(LPM3):带有晶振的实时时钟,看门狗和电源监控器可用,完全RAM保持,快速唤醒: 2.2V时为1.9μA,3V时为2.1μA(典型值)低功耗振荡器(VLO),通用计数器,看门狗和电源监控器可用,完全RAM保持,快速唤醒: 3V时为1.4 μA(典型值) 关闭模式(LPM4):完全RAM保持,电源监视器可用,快速唤醒: 3V时为1.1μA(...
发表于 11-02 18:49 91次 阅读
MSP430F5328-EP 混合信号微控制器,MSP430F5328-EP

MSP430F5438A-EP 混合信号微控制器,MSP430F5438A-EP

MSP430F5438A-EP是一款超低功耗微控制器。此架构,与多种低功耗模式配合使用,是在便携式测量应用中实现延长电池寿命的最优选择。该器件具有一个强大的16位RISC CPU,16位寄存器,以及常数发生器,以便于获得最大编码效率。此数控振荡器(DCO)可在 3.5 μs(典型值)内实现从低功率模式唤醒至激活模式。 MSP430F5438A-EP是一个微控制器配置,此配置具有三个16位定时器,一个高性能12位模数(A /D)转换器,多达四个通用串行通信接口(USCI),硬件乘法器,DMA,具有报警功能的实时时钟模块以及多达87个I /O引脚。 < p>这个器件的典型应用包括模拟和数字传感器系统,数字电机控制,遥控,恒温器,数字定时器,手持仪表。 特性 低电源电压范围: 3.6V到低至1.8V 超低功耗 激活模式(AM):所有系统时钟激活 8MHz,3.0V,闪存程序执行时为230μA/MHz(典型值) 8MHz,3.0V,RAM程序执行时为110μA /MHz(典型值) 待机模式(LPM3):带有晶振的实时时钟,看门狗且电源监控器可用,完全RAM保持,快速唤醒: 2.2V时为1.7μA,3.0V时为2.1μA(典型值)低功耗振荡器(VLO),通用计数器,看...
发表于 11-02 18:49 80次 阅读
MSP430F5438A-EP 混合信号微控制器,MSP430F5438A-EP

MSP430FR5969-SP 耐辐射混合信号微控制器

MSP430™超低功耗(ULP)FRAM平台将独特的嵌入式FRAM和整体超低功耗系统架构组合在一起,从而使得创新人员能够以较少的能源预算增加性能.FRAM技术以低很多的功耗将SRAM的速度,灵活性和耐久性与闪存的稳定性和可靠性组合在一起。 MSP430FR5969- SP的超低功耗架构可提供七种低功耗模式,这七种模式均经过优化,能够在低功耗的情况下对系统进行分布式遥测和维护。 MSP430FR5969- SP的集成式混合信号特性使其非常适合用于下一代航天器的分布式遥测应用。对单粒子闩锁的强大抗干扰性和电离辐射总剂量使得该器件得以应用于多种空间和辐射环境中。 特性 抗辐射加固 扩展工作温度(-55°C至105°C)(1)< /sup> 单粒子闩锁(SEL)在125°C下的抗扰度可达72 MeV.cm 2 /mg 辐射批次验收测试结果为50krad 48引脚VQFN塑料封装 单受控基线 延长了产品变更通知周期 产品可追溯性 延长了产品生命周期 嵌入式微控制器 时钟频率高达16MHz的16位精简指令集计算机(RISC)架构 宽电源电压范围(1.8V至3.6V)(2) 优化的超低功率模式 工作模式:大约100μA/MHz 待机(具有低功率低频内部时钟源(VL...
发表于 11-02 18:48 211次 阅读
MSP430FR5969-SP 耐辐射混合信号微控制器

MSP430F6459-HIREL MSP430F6459-Hirel

TI的MSP430系列超低功耗微控制器种类繁多,各成员器件配备不同的外设集以满足各类应用的需求。架构与五种低功耗模式配合使用,是延长便携式测量应用电池寿命的最优选择。该器件具有一个强大的16位精简指令集(RISC)中央处理器(CPU),使用16位寄存器以及常数发生器,以便获得最高编码效率。该数控振荡器(DCO)可在3μs(典型值)内从低功率模式唤醒至激活模式。 MSP430F6459-HIREL微控制器配有一个集成式3.3V LDO,四个16位定时器,一个高性能12位ADC,三个USCI,一个硬件乘法器,DMA,具有报警功能的RTC模块,一个比较器和多达74个I /O引脚。 这些器件的典型应用包括模拟和数字传感器系统,数字电机控制,遥控,恒温器,数字定时器以及手持仪表。 特性 低电源电压范围: 1.8V到3.6V 超低功耗 工作模式(AM):所有系统时钟均工作:在8MHz,3V且闪存程序执行时为295μA/MHz(典型值) 待机模式(LPM3):< br>看门狗(采用晶振)和电源监控器工作,完全RAM保持,快速唤醒: 2.2V时为2μA,3V时为2.2μA(典型值) 关断,实时时钟(RTC)模式(LPM 3.5):关断模式,RTC(采用晶...
发表于 11-02 18:48 58次 阅读
MSP430F6459-HIREL MSP430F6459-Hirel

SM320C6457-HIREL 通信基础设施数字信号处理器

的TMS320C64x +™DSP(包括SM320C6457-HIREL器件)是TMS320C6000DSP平台上的高性能定点DSP系列产品.SM320C6457-HIREL器件基于德州仪器(TI)开发的第3代高性能,高级VelociTI超长指令字(VLIW)架构,这使得该系列DSP非常适合包括视频和电信基础设施,成像/医疗以及无线基础设施(WI)在内的各类应用。 C64x +器件向上代码兼容属于C6000™DSP平台的早期器件。 基于65nm的工艺技术以及凭借高达96亿条指令每秒(MIPS)[或9600 16位MMAC每周期]的性能( 1.2GHz的时钟速率时),SM320C6457-HIREL器件提供了一套应对高性能DSP编程挑战的经济高效型解决方案.SM320C6457-HIREL DSP可以灵活地利用高速控制器以及阵列处理器的数值计算能力。 C64x + DSP内核采用8个功能单元,2个寄存器文件以及2个数据路径。与早期C6000器件一样,其中2个功能单为乘法器或.M单元.C64x内核每个时钟周期执行4次16位×16位乘法累加,相比之下,C64x + .M单元的乘法吞吐量可增加一倍。因此,C64x +内核每个周期可以执行8次16位×16位MAC。采用1.2GHz时钟速率时,这意味着每秒可以执行9600次1...
发表于 11-02 18:48 92次 阅读
SM320C6457-HIREL 通信基础设施数字信号处理器

MSP430G2230-EP MSP430G2230-EP 混合信号微控制器

MSP430G2230是一款超低功耗微控制器。这种架构与5种低功耗模式相组合,专为在便携式测量应用中延长电池使用寿命而优化。该器件具有一个强大的16位RISC CPU,16位寄存器和有助于获得最大编码效率的常数发生器。数字控制振荡器(DCO)可在不到1μs的时间里完成MSP430G2230是一款超低功率混合信号微控制器,此微控制器装有一个内置的16位定时器和4个I /O引脚。除此之外,MSP430G2230还有使用同步协议(SPI或者I2C)的内置通信功能和一个10位A /D转换器。 特性 低电源电压范围:1.8V至3.6V 超低功耗 激活模式:220μA(在1MHz频率和2.2V电压条件下) 待机模式:0.5μA 关闭模式(RAM保持):0.1μA < /li> 5种节能模式 可在不到1μs的时间里超快速地从待机模式唤醒 16位精简指令集(RISC)架构,62.5 ns指令周期时间 基本时钟模块配置: 高达16MHz的内部频率并具有4个精度为±1%的校准频率 内部超低功耗低频振荡器 32kHz晶振晶体振荡器不能在超过105°C的环境中运行 外部数字时钟源 < li>具有2个捕捉/比较寄存器的16位Timer_A 带内部基准,采样与保持以及自动扫描功能的10位200ksps模数(A /D)转...
发表于 11-02 18:48 57次 阅读
MSP430G2230-EP MSP430G2230-EP 混合信号微控制器

MSP430G2302-EP .混合信号微控制器

德州仪器(TI)的MSP430系列超低功率微控制器包含几个器件,这些器件特有针对多种应用的不同的外设集这种架构与5种低功耗模式相组合,专为在便携式测量应用中延长电池的使用寿命而进行了优化。该器件具有一个强大的16位RISC CPU,16位寄存器和有助于大大提高编码效率的常数发生器。数控振荡器可在少于1μs内将器件从低功耗模式唤醒至激活模式。 MSP430G2302系列微控制器是超低功耗的混合信号微控制器,此微控制器带有内置的16位定时器,和多达16个I /O触感使能引脚以及使用通用串行通信接口实现的内置通信功能。配置详细信息,请参见。典型应用包括低成本传感器系统,此类系统负责捕获模拟信号,将之转换为数字值,随后对数据进行处理以进行显示或传送至主机系统。 特性 低电源电压范围:1.8V至3.6V 超低功耗 激活模式:220μA(在1MHz频率和2.2V电压条件下) 待机模式:0.5μA 关闭模式(RAM保持):0.1μA < /li> 5种节能模式 可在不到1μs的时间里超快速地从待机模式唤醒 16位精简指令集(RISC)架构,62.5当前超低功耗低频(LF)振荡器 32kHz晶振 外部数字时钟源 一个具有3个捕获/比较寄存器的16位Timer_A ...
发表于 11-02 18:48 121次 阅读
MSP430G2302-EP .混合信号微控制器

TMS570LS3137-EP 16/32 位 RISC 闪存微控制器,TMS5703137-EP

TMS570LS3137-EP 器件是一款用于安全系统的高性能 系列微控制器。 此安全架构包括:以锁步模式运行的双核 CPUCPU 和内存内置自检 (BIST) 逻辑闪存和数据 SRAM 上的 ECC外设存储器的奇偶校验 外设 I/O 上的回路功能 TMS570LS3137-EP 器件集成了 ARM Cortex-R4F 浮点 CPU,此 CPU 可提供一个高效的 1.66 DMIPS/MHz,并且 具有能够以高达 180 MHz 运行的配置,从而提供高达 298 DMIPS。 此器件支持字不变大端序 [BE32] 格式。 TMS570LS3137-EP 器件具有 3MB 的集成闪存以及 256KB 的数据 RAM,这些闪存和 RAM 支持单位错误校正和双位错误检测。 这个器件上的闪存存储器是一个由 64 位宽数据总线接口实现的非易失性、电可擦除并且可编程的存储器。 为了实现所有读取、编程和擦除操作,此闪存运行在一个 3.3V 电源输入上(与 I/O 电源一样的电平)。 当处于管线模式中时,闪存可在高达 180MHz 的系统时钟频率下运行。 在字节、半字、字和双字模式中,SRAM 支持单循环读取和写入访问。 TMS570LS3137-EP 器件特有针对基于实时控制应用的外设,其中包括 2 个下一代高端定时器 ...
发表于 11-02 18:48 344次 阅读
TMS570LS3137-EP 16/32 位 RISC 闪存微控制器,TMS5703137-EP